Characterization of subcellular morphology of single yeast cells using high frequency microfluidic impedance cytometer.

نویسندگان

  • Niels Haandbæk
  • Sebastian C Bürgel
  • Flavio Heer
  • Andreas Hierlemann
چکیده

Single-cell impedance cytometry is an electrical analysis method, which has been used to count and discriminate cells on the basis of their dielectric properties. The method has several advantages, such as being label free and requiring minimal sample preparation. So far, however, it has been limited to measuring cell properties that are visible at low frequencies, such as size and membrane capacitance. We demonstrate a microfluidic single cell impedance cytometer capable of dielectric characterization of single cells at frequencies up to 500 MHz. This device features a more than ten-fold increased frequency range compared to other devices and enables the study of both low and high frequency dielectric properties in parallel. The increased frequency range potentially allows for characterization of subcellular features in addition to the properties that are visible at lower frequencies. The capabilities of the cytometer are demonstrated by discriminating wild-type yeast from a mutant, which differs in size and distribution of vacuoles in the intracellular fluid. This discrimination is based on the differences in dielectric properties at frequencies around 250 MHz. The results are compared to a 3D finite-element model of the microfluidic channel accommodating either a wild-type or a mutant yeast cell. The model is used to derive quantitative values to characterize the dielectric properties of the cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband single cell impedance spectroscopy using maximum length sequences

Measurements of the dielectric (or impedance) properties of cells can be used as a general characterization and diagnostic tool. In this paper, we describe a novel impedance spectroscopy technique for the analysis of single biological cells in suspension. The technique uses maximum length sequences (MLS) for periodic excitation signal in a microfluidic impedance cytometer. The method allows mul...

متن کامل

High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences.

A novel impedance spectroscopy technique has been developed for high speed single biological particle analysis. A microfluidic cytometer is used to measure the impedance of single micrometre sized latex particles at high speed across a range of frequencies. The setup uses a technique based on maximum length sequence (MLS) analysis, where the time-dependent response of the system is measured in ...

متن کامل

Yeast Cells Detection in a Very Fast and Highly Versatile Microfabricated Cytometer

A novel microfluidic chip able to detect a wide range of different cell sizes at very high rates is reported. The device uses two-dimensional hydrodynamic focusing [1] of the sample (conducting) flow by three non-conducting flows and highspeed differential impedance detection electronics. High-speed counting of 15μm polystyrene particles and 5μm yeast cells with a rate of up to 1000 particles/s...

متن کامل

Electrical cell counting process characterization in a microfluidic impedance cytometer.

Particle counting in microfluidic devices with coulter principle finds many applications in health and medicine. Cell enumeration using microfluidic particle counters is fast and requires small volumes of sample, and is being used for disease diagnostics in humans and animals. A complete characterization of the cell counting process is critical for accurate cell counting especially in complex s...

متن کامل

Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 14 2  شماره 

صفحات  -

تاریخ انتشار 2014